
 1

In this assignment you will learn how to create an executable jar file containing a Java program, and learn
how to automate compilation and other tasks using Unix Makefiles. If you are using a Mac and have a
properly installed jdk, you can do this on your own machine, otherwise login to the unix server to
compete this lab.

Jar Files
Recall the basic program HelloWorld.java:

// HelloWorld.java
class HelloWorld{
 public static void main(String[] args){
 System.out.println("Hello, world!");
 }
}

One may compile this program in the usual manner by typing javac HelloWorld.java at the Unix
command prompt, and then run it by doing java HelloWorld. Java provides a utility called jar (Java
archive) for creating compressed archives of .class files. This utility can be used to create an
executable jar file containing a Java program such as HelloWorld. When a program is archived in this
manner, one need not type java at the command line, just the name of the jar file. (Note this feature is
not available on Windows and Mac platforms. It works on Linux and most other versions of Unix, other
than Mac OS X.) To create a jar file, first create a Manifest file that specifies the entry point for
program execution, i.e. which .class file contains the main() method to be executed. (All of the java
programs we’ve seen so far consist of a single .class file. More complicated programs usually consist
of multiple files.) Create a file called Manifest containing the single line:

Main-class: HelloWorld

You can do this without opening up an editor by doing:

% echo Main-class: HelloWorld > Manifest

As you learned in some previous lab assignments, the Unix command echo prints text to stdout, and the
output redirect operator > assigns stdout to a file, in this case Manifest, rather than the screen. As
before the percent symbol % represents the Unix command prompt and you do not type it. Now do

% jar cvfm HelloWorld Manifest HelloWorld.class

The first group of characters after the jar command are options. (c: create a jar file, v: verbose output,
f: second argument gives the name of the jar file to be created, m: third argument is the name of a
manifest file. Consult the man pages to see other options to jar.) Following the manifest file name is the
(space separated) list of .class files to be archived. In our example, this consists of the single file
HelloWorld.class. The name of the executable jar file (second argument) can be anything, and in
particular it need not match the prefix of any .class file. For that matter, the manifest file need not be
called Manifest. Before we can run the jar file HelloWorld, we must first make it executable (to you
the user) by using the chmod command:

% chmod u+x HelloWorld

 2

The parameter u+x says give the User the permission to eXecute this file. You can learn more about
chmod by typing man chmod. Now type

 % HelloWorld

to run the program. The whole process can be accomplished by typing five Unix commands:

% javac –Xlint HelloWorld.java
% echo Main-class: HelloWorld > Manifest
% jar cvfm HelloWorld Manifest HelloWorld.class
% rm Manifest
% chmod u+x HelloWorld

Notice we have removed the (now unneeded) Manifest file. The –Xlint option to javac enables all
recommended warnings. You can repeat this process with any of the Java programs we’ve studied, or
with any of your own projects. The only problem is that it’s a big hassle to type all those lines.
Fortunately, Unix has a utility that automates this and many other compilation tasks.

Makefiles
Large programs are often distributed throughout many files that depend on each other in complex ways.
Whenever one file changes, all the files that depend on it must be recompiled. This is true in Java, C,
C++, and most other languages. When working on such a program, it can be difficult and tedious to keep
track of all the dependency relationships. The Unix make utility automates this process. The make
command looks at dependency lines in a file named Makefile stored in your current working directory.
The dependency lines indicate relationships among files, specifying a target file that depends on one or
more prerequisite files. If a prerequisite file has been modified more recently than its target file, make
updates the target file based on construction commands that follow the dependency line. The make
command normally stops if it encounters an error during the construction process. Each dependency line
has the following format.

target: prerequisite-list
<tab--->construction-command(s)

The dependency line is composed of the target and the (space separated) prerequisite-list
separated by a colon. Each construction-command line must start with a tab character, and must
follow the dependency line. Start an editor and create a file called Makefile containing the following:

A simple Makefile for the HelloWorld program
HelloWorld: HelloWorld.class
 echo Main-class: HelloWorld > Manifest
 jar cvfm HelloWorld Manifest HelloWorld.class
 rm Manifest
 chmod u+x HelloWorld

HelloWorld.class: HelloWorld.java
 javac -Xlint HelloWorld.java

clean:
 rm –f HelloWorld.class HelloWorld

 3

Anything following # on a line is a comment and is ignored by make. The second line says that the target
HelloWorld depends on HelloWorld.class. If HelloWorld.class exists, and is up to date, then
HelloWorld can be created by doing the construction commands that follow. (Don’t forget that all
indentation is accomplished via the tab character.) The next target is HelloWorld.class which
depends on HelloWorld.java. The next target clean, is an example of what is called a phony target
since it doesn’t depend on anything, but just runs a command. Any target can be built (or perhaps
performed if it is a phony target) by typing

% make target-name

where target-name is any target in the Makefile. Just typing make by itself makes the first target in
the Makefile. Try doing

% make clean

to get rid of all your previously compiled stuff, then do

% make

again to see the compilation performed from scratch. Notice the clean target says to remove some files
using the Unix command rm. The –f option to rm is used here to suppress any error messages that might
arise if the files to be removed do not exist. See the man pages for rm for more options.

What to turn in
This Makefile can be rewritten to work on any Java program by just replacing HelloWorld
everywhere you see it by the appropriate program name.
1. Make a directory named lab5.
2. Put a copy of the program TwentyOnePickup.java from lab4 in the new lab5 directory.
3. Write a Makefile that creates an executable jar file for the program TwentyOnePickup.java.

This jar file should itself be called TwentyOnePickup.
4. Run make to build the jar file.
5. Confirm the jar file is correct which can be done by typing the command:

java -jar TwentyOnePickup
6. Your Makefile should include a target called clean, as in the above example (but altered

appropriately for this assignment).
7. Create a zip file, lab5.zip, of your lab5 folder which should at this point contain Makefile,

TwentyOnePickup.java, TwentyOnePickup.class, and the jar file TwentyOnePickup. Both
OS X and Windows have direct support in their respective file browsers for creating zip files. If you
need help, ask a TA or a friend. Other similar compressed archive formats are not acceptable. If you
completed the above steps on the unix server, you can create a zip file using the following steps:

a. Type: cd .. which will move you into the parent directory of lab5.
b. Type: zip lab5.zip lab5/* which will create a zip file named lab5zip containing everything

in the directory lab5. Note: typing zip lab5.zip lab without the "*" will create a zip file
containing an EMPTY lab5 folder. This is NOT what you want.

c. Transfer lab5.zip to your local machine using your preferred file transfer program (see lab
2) and submit it. Note you can confirm you created it correctly (that it isn't empty) by
unzipping it on your local machine and seeing that all of the files are there in the lab5
folder as expected.

 4

d. As a final note, if you do this from the lab machines, it is possible to locate the remove file
directly without transferring it. Ask a TA for help.

8. Submit this lab5.zip file under lab5 in Canvas.

